Neighborhood-union condition for an [a,b]-factor avoiding a specified Hamiltonian cycle

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Placing Specified Vertices at Precise Locations on a Hamiltonian Cycle

Sharp minimum degree and degree sum conditions are proven for the existence of a Hamiltonian cycle passing through specified vertices with prescribed distances between them in large graphs.

متن کامل

a neighborhood :union: condition for fractional $(k,n',m)$-critical deleted graphs

a graph $g$ is called a fractional‎ ‎$(k,n',m)$-critical deleted graph if any $n'$ vertices are removed‎ ‎from $g$ the resulting graph is a fractional $(k,m)$-deleted‎ ‎graph‎. ‎in this paper‎, ‎we prove that for integers $kge 2$‎, ‎$n',mge0$‎, ‎$nge8k+n'+4m-7$‎, ‎and $delta(g)ge k+n'+m$‎, ‎if‎ ‎$$|n_{g}(x)cup n_{g}(y)|gefrac{n+n'}{2}$$‎ ‎for each pair of non-adjac...

متن کامل

A NEIGHBORHOOD UNION CONDITION FOR FRACTIONAL (k, n′,m)-CRITICAL DELETED GRAPHS

A graph G is called a fractional (k, n′,m)-critical deleted graph if any n′ vertices are removed from G the resulting graph is a fractional (k,m)-deleted graph. In this paper, we prove that for integers k ≥ 2, n′,m ≥ 0, n ≥ 8k + n′ + 4m− 7, and δ(G) ≥ k + n′ +m, if |NG(x) ∪NG(y)| ≥ n+ n′ 2 for each pair of non-adjacent vertices x, y of G, then G is a fractional (k, n′,m)-critical deleted graph....

متن کامل

An efficient condition for a graph to be Hamiltonian

LetG= (V ,E) be a 2-connected simple graph and let dG(u, v) denote the distance between two vertices u, v in G. In this paper, it is proved: if the inequality dG(u) + dG(v) |V (G)| − 1 holds for each pair of vertices u and v with dG(u, v) = 2, then G is Hamiltonian, unless G belongs to an exceptional class of graphs. The latter class is described in this paper. Our result implies the theorem of...

متن کامل

A neighborhood and degree condition for panconnectivity

Let G be a 2-connected graph of order n with x, y ∈ V (G). For u, v ∈ V (G), let Pi[u, v] denote the path with i vertices which connects u and v. In this paper, we prove that if n ≥ 5 and |NG(u)∪NG(v)|+dG(w) ≥ n+1 for every triple of independent vertices u, v, w of G, then there exists a Pi[x, y] in G for 5 ≤ i ≤ n, or G belongs to one of three exceptional classes. This implies a positive answe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete Mathematics

سال: 2017

ISSN: 0012-365X

DOI: 10.1016/j.disc.2016.09.026